Indy Acoustic Research
  • Home
  • People
  • Services
    • Consulting
    • Testing
    • Product Design
    • Teams Pre-Certification
  • Blog
  • Contact
  • Partners

IAR Mouth Source Prototype V1.0

6/25/2025

 
Over the years devices have become more complex and we found ourselves needing an increasing number of artificial speech sources to simulate interfering talkers. The IAR Mouth Source was developed as a low-cost, accessible ITU-T P.51 compliant acoustic source for testing. It aims to replicate human speech directivity while being easy to manufacture and maintain. The design balances performance, manufacturability, and compliance with international standards- and while we're currently using it in some measurement setups, there is still a list of improvements desired.
Picture
Goals: Accessible and Standards-Compliant
The primary goals were:
  • Low total cost ($50 target)
  • Manufacturable in-house (FDM or SLA enclosure)
  • Use of a commercially available driver, 2-3" diameter.
  • Compliance with ITU-T P.51 for both nearfield and farfield response.
  • Improved bandwidth (current Artificial mouths we have are 100Hz - 10kHz bandwidth)
Design and Build: Simulation-Driven Iteration
COMSOL was used to model the front volume and opening geometry, which significantly affect nearfield acoustic performance
Picture
​Rapid iteration of geometries resulted in a finalized design that would ensure compliance with P.51.

Read More

HATS Boom Element Angle and Radial Distance (BEARD) Jig

5/22/2025

 
Picture
Picture
To aid in conducing repeat measurements on headset microphone booms, IAR has created the HATS Boom Element Angle and Radial Distance "BEARD" jig for B&K 4128/5128 series HATS. This jig assists with capturing measures three dimensions (R, Θ, Z) from the Lip Center Plane x Lip Reference Point origin.
​We can send CAD files and part list to anyone interested. Please send an e-mail to:
[email protected] to SLA your own!

Form 4 Printer Addition

6/25/2024

 
Picture
IAR is thrilled to introduce a significant enhancement to our prototyping capabilities: the Form 4 SLA Printer. This cutting-edge technology vastly improves our ability to swiftly address detailed acoustic queries such as "what happens when I change XYZ...?"

​IAR has prototyped plastic parts using a Fused Deposition Method (FDM) printer (Prusa), supplemented by a large-format resin printer (Peopoly L) added three years ago. While FDM remains ideal for economical and rapid fixturing solutions, its melted plastic lines and occasional air gaps between layers act acoustically like a highly resistive porous wall, necessitating epoxy coating of thin enclosure walls for transducer applications—a labor-intensive process.


Read More

Exploring Audio for Smart Glasses: A Look into Open Ear Speaker Design

1/18/2024

 
The use of non-occluding off-ear audio speakers has significantly increased in recent years, driven by the growth of Augmented Reality (AR), Virtual Reality (VR), and smart glasses assistant products. These devices contribute to the existing array of products with off-ear audio, such as sport earphones, hearing assistants (hearables), and open ear  headphones.

There are several advantages to open ear audio systems. In terms of comfort, the ear pinna and tragus are highly sensitive, making it beneficial to leave them untouched for long-term product wearability. An open design also eliminates concerns about thermal buildup. Furthermore, the acoustic waves of the sound source to naturally diffract around a user's ear which has benefits for perceived spaciousness (stereo image/ERTF) and sound source localization, contributing to the advancement of AR/VR scene realism.

However, a major audio issue with these devices is usually limited bandwidth. Traditional headphone designs require a seal to the ear to reproduce low frequencies with a small driver. Conversely, sealed box microspeaker designs such as those found in laptops and cell phones need a large speaker diaphragm or displacement (volume velocity) and back air volume to produce both low frequencies and the required output level. Such a large and heavy implementation is not typically possible on head-worn products. High frequencies are also often compromised by porting designs and diaphragm break-up modes. This article demonstrates a method of open ear speaker design known as the Dipole design, which utilizes the proximity effect to enhance low-frequency output and increase privacy (the ability of others nearby to hear the wearer's audio). One potential tradeoff, among many possibilities, is illustrated when implementing the dipole effect stretched excessively, impacting high-frequency response.

Smart Glasses Free-Field Measurement

A commercially available smart glasses product has two ports for the speaker in the stem near the ear:
Picture

Read More

2023 Lab tour

2/14/2023

 
2023 is here and we thought we'd share a tour of the lab, highlighting a few of the capabilities we've developed over the years.

Note Magazine Article

12/14/2021

 
Picture
IAR was interviewed by Note Magazine on our design involvement with Headphones for the Fall 2021 edition.
Check it out here: https://issuu.com/classicalmusicindy/docs/note-fall2021issue-v04-101821web
 

Room Acoustics Simulations in Comsol

7/22/2021

 
Picture
Picture
Within Comsol Multiphysics is the ability to create room acoustics simulations.  This can be extremely helpful in shaping the sonic picture of any space.  For example, when designing a classroom, if the room is large and has a lot of reflective surfaces, a high reverberation time and low clarity can cause students sitting in the back to have trouble understanding the speaker.  By using a simulation, you can test out many acoustic configurations of a room before anything is physically built, saving both time and money, and creating an auditory experience tailored to the needs of the space.

Users build out geometry of the room, adding in carpets, panels, and all other objects.  Next, users define absorption coefficients of all materials across frequency bands and map them to different surfaces in the room.  After this, the Sabine reverb equation can be calculated as a parametric sweep is simulated.
​
The room being designed in this case is a room-within-a-room.  This will be useful for testing consumer devices in a setting that replicates actual use scenarios. After doing RT60 measurements in Soundcheck 19, it was decided corner bass traps would be a beneficial addition to the room.  In Comsol, multiple different bass traps were simulated in different positions to determine best material, placement, and volume to reduce sound reflections in low frequencies with minimal impact in high frequencies.   

By: Shannon McConnell

Noise File Comparison Tool

7/22/2021

 
Whether you’re in a teleconference, a live music setting, or simply working in an office, noise and room reverberation time can affect your ability to pleasurably listen.  With our new Noise Files Comparison Tool, you can hear and easily compare different kinds of noise to aid in self diagnosing issues quickly and efficiently.  For example, you can toggle between 60Hz, Bluetooth, GSM, and Wi-Fi noise interferences to help find the source of unwanted sounds.  Also included are different types of broadband and background noise such as pink noise, white noise, city traffic, and a crowded pub.
​
Additionally, recordings of the in-house Head and Torso Simulator (HATS) playing back an IEEE standard speech file were taken in an anechoic chamber, an acoustically treated room, and a highly reverberant non-acoustically treated room. These can be compared to highlight the impact partial and full acoustic treatment has on speech intelligibility.  

We can also use this tool to create custom recordings of your product in different noise conditions, tuning configurations, or other impairments- for subjective evaluation without a trip to our lab. For dB-accurate reproduction we ship you a DAC and Reference Headphones with Comparison Tool files corrected for both the headphone response and binaural HATS Head Related Transfer Function (HRTF).
​
By: Shannon McConnell

Voice Coil: March 2021 Article

3/1/2021

 
Picture
Indy Acoustic Research collaborated with Listen, Inc. to bring the data behind the article "How to Measure Free-Field Speaker Response without an Anechoic Chamber" featured in the March 2021 Voice Coil article, linked below!

The hybrid splice method of loudspeaker frequency response measurement compares well with an anechoic chamber for a single loudspeaker if the splice frequency can be determined. However, complex devices require the greater flexibility in setup conditions and off-angle measurements afforded by a full chamber. 
article_vc_mar2021_simulated_free_field.pdf
File Size: 8919 kb
File Type: pdf
Download File

SLA Prototyping

1/27/2021

 
Picture
IAR has added SLA capability to its internal prototyping shop to add finer detail and larger builds (up to 9" x 12" x 18")!




<<Previous
    View my profile on LinkedIn

    RSS Feed

    Archives

    June 2025
    May 2025
    June 2024
    January 2024
    February 2023
    December 2021
    July 2021
    March 2021
    January 2021
    March 2020
    January 2019
    March 2018
    October 2017
    March 2017
    December 2016
    April 2016
    November 2015
    October 2015
    September 2015
    July 2015

    Categories

    All
    Equipment
    Excel
    Glenn Hess
    Larry Marcus
    Marc Reese
    Shannon McConnell
    Simulation
    SoundCheck
    The Lab
    Tricks Of The Trade

Copyright ©2015-2025 Indy Acoustic Research LLC. All Rights Reserved.
​